Скачать реферат Теория и практика вероятностно-статистических исследований

<-- рефераты Математика

СОДЕРЖАНИЕ
1. ВВЕДЕНИЕ 6
1. ОСНОВНЫЕ ПАРАМЕТРЫ И ОПРЕДЕЛЕНИЯ НОРМАЛЬНОГО ЗАКОНА РАСПРЕДЕЛЕНИЯ 8
1.1. Нормальное распределение 8
1.2. Статистическая гипотеза 8
1.3. Ошибки первого и второго рода. Уровень значимости 9
1.4. Степень свободы параметра 10
1.5. Критическая область. Область принятия гипотезы. 10
1.6. Критерий Стьюдента 11
1.7. Критерий Фишера 13
1.8. Критерий Кохрэна 15
1.9. Критерий Пирсона 15
2. ХАРАКТЕРИСТИКА ПАКЕТА EXCELL 19
3. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ 21
4. 4. ПРОВЕРКА ГИПОТЕЗЫ О НОРМАЛЬНОМ ЗАКОНЕ РАСПРЕДЕЛЕНИЯ ДАННЫХ В ВЫБОРКЕ 24
4. РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ О НОРМАЛЬНОМ ЗАКОНЕ РАСПРЕДЕЛЕНИЯ ДАННЫХ В ВЫБОРКЕ 26
ЗАКЛЮЧЕНИЕ 28
ЛИТЕРАТУРА 29

ВВЕДЕНИЕ
Нормальное (гауссовское) распределение занимает центральное место в теории и практике вероятностно-статистических исследований. В качестве непрерывной аппроксимации к биномиальному распределению его впервые рассматривал А.Муавр в 1733 г. Через некоторое время нор¬мальное распределение снова открыли и изучили К.Гаусс (1809 г.) и -П.Лаплас, которые пришли к нормальной функции в связи с ра¬ботой по теории ошибок наблюдений.
Цель их объяснения механизма формирования нормально распределенных случайных величин заключается в следующем. Постулируется, что зна¬чения исследуемой непрерывной случайной величины формируются под воздействием очень большого числа независимых случайных факторов, при¬чем сила воздействия каждого отдельного фактора мала и не может прева¬лировать среди остальных, а характер воздействия - аддитивный (т.е. при воздействии случайного фактора F на величину а получается вели¬чина ___________, где случайная "добавка" ______ мала и равновероятна по знаку).
Во многих случайных величинах, изучаемых в технике и других областях, естественно видеть суммарный аддитивный эффект большого числа независимых причин. Но центральное место нормального закона не следует объяснять его универсальной приложимостью.
В этом смысле нормальный закон - один из многих типов распределения, имеющихся в природе, однако с относительно большим удельным весом практической приложимости.
Однако полнота теоретических исследований, относящихся к нормаль¬ному закону, а также сравнительно простые математические свойства де¬лают его наиболее привлекательным и удобным в применении. Даже в слу¬чае отклонения исследуемых экспериментальных данных от нормального закона существует, по крайней мере, два пути его целесообразной эксплуатации: во-первых, использовать нормальный закон в качестве пер¬вого приближения (при атом нередко оказывается, что подобное допуще¬ние дает достаточно точные с точки зрения конкретных целей исследова¬ния результаты); во-вторых. подобрать такое преобразование исследуемой случайной величины, которое видоизменяет исходный "не нормальные" закон распределения, превращая его в нормальный.
Удобно для статистических приложений и свойство "самовоспроизводимости" нормального закона, заключающееся в том, что сумма любого числа нормально распределенных случайных величин тоже подчиняется нормальному закону распределения. Кроме того, с помощью закона нор¬мального распределения выведен целый ряд других важных распределений, построены различные статистические критерии

1. ОСНОВНЫЕ ПАРАМЕТРЫ И ОПРЕДЕЛЕНИЯ НОРМАЛЬНОГО ЗАКОНА РАСПРЕДЕЛЕНИЯ
1.1. Нормальное распределение
В приложениях статистики чаще всего используется нормальное (гауссовское) распределение. Непрерывная случайная величина Х называется распределенной по нормальному закону с параметрами ______, если ее плотность распределения есть

.
1.2. Статистическая гипотеза
Часто необходимо знать закон распределения генеральная совокуп¬ности. Если он неизвестен, но есть основания предположить, что он имеет определенный вид (назовем его А), выдвигают гипотезу: генераль¬ная совокупность распределена по закону А. Таким образом, в этой ги¬потезе речь вдет о виде предполагаемого распределения.
Возможен случай, когда закон распределения известен, а его параметры неизвестны. Если есть основания предположить, то неизвестный параметр Q равен определенному значению Q0 , выдвигают гипотезу: Q = Q0. Таким образом, в этой гипотезе речь идет о предполагаемой величине параметра одного известного распределения.
Возможны и другие гипотезы: о равенстве параметров двух или нескольких распределений, о независимости выборок и многие другие.
Статистической называют гипотезу о виде неизвестного распределения или о параметрах известных распределений.
Например статистическими будут гипотезы; генеральная распределена по закону Пуассона, дисперсии двух нормальных совокупностей равны между собой.
В первой гипотезе сделано предположение о виде неизвестного распределения, во второй - о параметрах двух известных распределений.
Наряду с выдвинутой гипотезой рассматривают и противоречивую ей гипотезу. Если выдвинутая гипотеза будет отвергнута, имеет место противоречащая гипотеза. По этой причине эти гипотезы необходимо различать.
Нулевой (основной) называют выдвинутую гипотезу Н0.
Конкурирующей (альтернативной) называют гипотезу Н1, противоречащую нулевой.
1.3. Ошибки первого и второго рода. Уровень значимости
Выдвинутая гипотеза может быть правильной или неправильной, поэ¬тому возникает необходимость проверить ее. Поскольку проверку произво¬дят статистическими методами, ее называют статистической. В итоге статистической проверки гипотезы в двух случаях может быть принято неправильное решение, т.е. могут быть допущены ошибки двух родов.
Ошибка первого рода состоит в том, что будет отвергнута правиль¬ная гипотеза.
Ошибка второго рода состоит в том» что будет принята неправильная гипотеза.
Правильное решение может быть принято также в двух случаях: гипотеза принимается; причем и в действительности она правильная; гипотеза отвергается, причем и в действительности она неверна.
Вероятность совершить ошибку первого рода принято обозначать q. Ее называют уровнем значимости. Наиболее часто уровень значимости принимают равным 0,05 или 0,01. Если, например, принят уровень значи¬мости, равный 0,05, то это означает, что в пяти случаях из ста мы рис¬куем допустить ошибку первого рода (отвергнуть правильную гипотезу).
1.4. Степень свободы параметра
. Степень свободы у какого-либо параметра определяют числом опы¬тов, по которым рассчитывают данный параметр, за вычетом количества констант, найденных по этим опытам независимо друг от друга.
1.5. Критическая область. Область принятия гипотезы.
Для проверки нулевой гипотеза используют специально подобранную случайную величину, точное или приближенное распределение которой известно. Ее обозначают t если она распределена по закону Стюдента, X2 - по закону "хи квадрат", F- по закону Фишера, G - по закону Кохрэна. Обозначим эту величину К
Статистическим критерием (или просто критерием) называется случайная величина К, служащая для проверки нулевой гипотезы.
Для проверки гипотезы по данным выборок вычисляют частные значения входящих в критерий величин и таким образом получают частное (наблюдаемое) значение критерия.
Наблюдаемым значением (Кнабл) называют значение критерия, вычисленное по выборкам. .

листать страницы:
1  2  3