Скачать реферат Нестандартный анализ

<-- рефераты Математика




Нестандартный анализ возник в 1960 году, когда Абрахам Робинсон, специалист по теории моделей, понял, каким образом методы математической логики позволяют оправдать классиков математического анализа XVII и XVIII вв., поставив на строгую основу их рассуждения, использующие “бесконечно большие” и бесконечно малые величины. Таким образом, речь шла не о каких-то новых “нестандартных” методах, не имеющих ничего общего с традиционной математикой, а о развитии новых средств внутри стандартной (теоретико-множественной) математики.
Нестандартный анализ остался бы любопытным курьезом, если бы единственным его приложением было обоснование рассуждений классиков математического анализа. Он оказался полезным и при развитии новых математических теорий. Нестандартный анализ можно сравнить с мостом, переброшенным через реку. Постройка моста не расширяет доступной нам территории, но сокращает путь с одного берега на другой. Подобным образом нестандартный анализ делает доказательства многих теорем короче.
Однако, быть может, главное значение нестандартного анализа состоит в другом. Язык нестандартного анализа оказался удобным средством построения математических моделей физических явлений. Идеи и методы нестандартного анализа могут стать важной частью будущей физической картины мира. Во всяком случае уже сейчас многие специалисты по математической физике активно используют нестандартный анализ в своей работе.
Несколько примеров нестандартного анализа:
Пример 1. Вычислим производную функции . Дадим аргументу x приращение dx, перейдя от точки x к точке x+dx. Выясним, насколько при этом изменилось значение функции . В точке х оно равнялось . В точке оно равняется . Таким образом, оно изменилось на . Отношение приращения функции к приращению аргумента равно

Если бесконечно мало, то членом в сумме можно пренебречь, и искомая производная равна .
Пример 2. Вычислим аналогичным способом производную функции . Приращение равно ; частное равно
.
Взяв бесконечно малым, получаем, что производная равна
.
Пример 5. Построение неизмеримого множества. Каждое действительное число , удовлетворяющее неравенству ,разлагаем в бесконечную двоичную дробь; для обеспечения однозначности запрещаем разложения с бесконечным числом идущих подряд единиц. Фиксируем произвольное бесконечно большое натуральное число и отбираем те действительные числа , у которых -й член разложения равен единице; множество всех отобранных таким образом действительных чисел неизмеримо по Лебегу.
Если примеры 1 и 2 хотя и могут шокировать нас наивной нестрогостью, но всё же в известной мере соответствуют интуиции, то пример 5 представляется просто-напросто абракадаброй.
Нестандартный анализ, однако, почти сплошь состоит из подобной абракадабры, имеющей в нём точный математический смысл. Он позволяет, в частности, с новой точки зрения посмотреть на многие рассуждения классиков математического анализа, кажущиеся нестрогими, но приводящие к успеху, и путём относительно небольших уточнений сделать их удовлетворяющими современным критериям строгости.

ЧТО ТАКОЕ БЕСКОНЕЧНО МАЛЫЕ ?
Один из наиболее принципиальных моментов нестандартного анализа состоит в том, что бесконечно малые рассматриваются не как переменные величины, а как величины постоянные. Достаточно раскрыть любой учебник физики, чтобы натолкнуться на бесконечно малые приращения, бесконечно малые объёмы и т. п. Все эти величины мыслятся, разумеется, не как переменные, а просто как очень маленькие, почти равные нулю.
Итак, речь будет идти о бесконечно малых числах. Какое число следует называть бесконечно малым? Предположим, что это положительное число , если оно меньше всех положительных чисел. Легко понять , что такого не бывает: если больше нуля , то оно является одним из положительных чисел , поэтому наше определение требует , чтобы число было меньше самого себя. Поэтому потребуем, чтобы было наименьшим в множестве положительных чисел. На числовой оси такое должно изобразиться самой левой точкой множества . К сожалению числа с указанными свойствами тоже нет и быть не может: число будет положительным числом, меньшим .
Более точное определение бесконечной малости числа >0 , которое мы будем использовать в дальнейшем таково. Будем складывать число с самим собой, получая числа + и т. д. Если все полученные числа окажутся меньше 1, то число и будет называться бесконечно малым. Другими словами, если бесконечно мало, то сколько раз не откладывай отрезок длины вдоль отрезка длины 1, до конца не дойдёшь. Наше требование к бесконечно малому можно переписать в такой форме
1<
Таким образом, если число бесконечно мало, то число бесконечно велико в том смысле, что оно больше любого из чисел : 1, 1+1, 1+1+1, 1+1+1+1 и т.д. Из сказанного можно видеть, что существование бесконечно малых противоречит так называемой аксиоме Архимеда, которая утверждает, что для любых двух отрезков А и В можно отложить меньший из них (А) столько раз, чтобы в сумме получить отрезок, превосходящий по длине больший отрезок (В).
Вывод таков: если мы хотим рассматривать бесконечно малые , мы должны расширить множество R действительных чисел до некоторого большого множества *R. Элементы этого нового множества мы будем называть гипердействительными числами. В нём аксиома Архимеда не выполняется и существуют бесконечно малые числа, такие, что сколько их не складывай с собой, сумма будет всё время оставаться меньше 1. Нестандартный, или неархимедов, анализ изучает множество гипердействительных чисел *R.
Какие требования естественно предъявлять к гипердействительным числам?
1). Чтобы множество гипердействительных чисел содержало все обыкновенные действительные числа: R *R.
2).Чтобы над гипердействительными числами можно было выполнять обычные операции: любые два гипердействительные числа нужно уметь складывать, умножать, вычитать и делить, причем так, чтобы выполнялись обычные свойства сложения и умножения. Кроме того, нужно уметь сравнивать гипердействительные числа по величине, т.е. решить какое из них больше.
Пусть имеется некоторое множество Р, в нём выделены некоторые элементы 0 и 1 и определены операции сложения, вычитания, умножения и деления, ставящие в соответствие двум любым элементам и множества Р их сумму , произведение , разность и частное (если ). Пусть при этом перечисленные операции обладают всеми обычными свойствами.
(1) ;
(2) ;
(3) ;
(4) ;
(5) ;
(6) ;
(7) ;
(8) ;
(9) (если ).
В таком случае множество Р называется полем. Пусть на поле Р введён порядок, т. е. для любой пары не равных друг другу элементов и определено, который из них больше. При этом выполняются такие свойства:
(10) если и , то ;
(11) если , то для любого ;
(12) если , , то ;
если , , то .
В таком случае говорят, что введенный порядок превращает Р в упорядоченное поле. Упорядоченное поле Р является неархимедовым тогда и только тогда, когда в нём есть положительные бесконечно малые элементы. Упорядоченное поле Р называется расширением поля действительных чисел R, если Р содержит все действительные числа и, кроме того, операции и порядок из Р, рассматриваемые на элементах их R, совпадают с обычными арифметическими операциями и обычным порядком на действительных числах.
ПРИМЕР НЕАРХИМЕДОВОЙ ЧИСЛОВОЙ СИСТЕМЫ
Построим пример неархимедова упорядоченного поля, являющегося расширением поля действительных чисел.
Предположим, что искомое расширение *R уже построено, и исследуем его строение. Элементы множества *R мы будем называть гипердействительными числами. Среди них содержатся и все действительные числа. Чтобы отличить их, будем называть действительные числа (элементы R) стандартными, а остальные гипердействительные числа (элементы *R/R)—нестандартными.
По нашему предположению, поле *R содержит бесконечно малые числа, не равные нулю. Гипердействительное число называется бесконечно малым, если все суммы

и т. д.
меньше 1. Здесь через обозначен модуль гипердействительного числа , определяемый так .
Отметим, что стандартное число 0 также оказывается, согласно этому определению, бесконечно малым. Но все остальные бесконечно малые числа не могут стандартными. Это следует из того, что для стандартных чисел справедлива аксиома Архимеда.
Наряду с бесконечно малыми в поле *R существуют и бесконечно большие. Мы называем гипердействительное число А бесконечно большим, если

листать страницы:
1  2  3