Скачать реферат Вычисление кратных интегралов методом ячеек с автоматическим выбором шага

<-- рефераты Математика


Министерство образования Украины
Днепропетровский государственный университет
–––––––––––––––––––––––––––––––––––––––––––––
Факультет прикладной математики
Кафедра вычислительной механики и прочности конструкций
КУРСОВАЯ РАБОТА
по численным методам в механике
на тему
Вычисление кратных интегралов
методом ячеек
с автоматическим выбором шага
Исполнитель: студент группы ПД-97-1 Коваленко А.В.
Руководитель: профессор Мусияка В.Г.
Днепропетровск 1999
Содержание
1 Постановка задачи 2
2 Теоретическая часть 2
2.1 Понятие о кубатурных формулах 2
2.2 Метод ячеек 3
2.3 Последовательное интегрирование 5
2.4 Кубатурная формула типа Симпсона 6
2.5 Принципы построения программ с автоматическим выбором шага 8
3 Список использованной литературы 9
4 Практическая часть 9
4.1 Решение задачи 9
4.2 Блок-схема программы 10
4.3 Листинг программы 12
4.4 Результаты решения 13
1 Постановка задачи
Найти при помощи метода ячеек значение интеграла , где – область, ограниченная функциями .
2 Теоретическая часть
Рассмотрим K-мерный интеграл вида:
(1)
где - некоторая K-мерная точка. Далее для простоты все рисунки будут сделаны для случая K=2.
2.1 Понятие о кубатурных формулах
Кубатурные формулы или, иначе формулы численных кубатур предназначены для численного вычисления кратных интегралов.
Пусть функция определена и непрерывна в некоторой ограниченной области . В этой области выбирается система точек (узлов) . Для вычисления интеграла приближённо полагают:
(2)
Чтобы найти коэффициенты , потребуем точного выполнения кубатурной формулы (2) для всех полиномов
(3)
степень которых не превышает заданного числа . Для этого необходимо и достаточно, чтобы формула (2) была точной для произведения степеней . Полагая в (1) , будем иметь:
(4)
Таким образом, коэффициенты формулы (2), вообще говоря, могут быть определены из системы линейных уравнений (4).
Для того чтобы система (4) была определённой, необходимо, чтобы число неизвестных было равно числу уравнений. В случае получаем:

2.2 Метод ячеек
Рассмотрим K-мерный интеграл по пространственному параллелепипеду . По аналогии с формулой средних можно приближённо заменить функцию на её значение в центральной точке параллелепипеда. Тогда интеграл легко вычисляется:
(5)
Для повышения точности можно разбить область на прямоугольные ячейки (рис. 2). Приближённо вы¬числяя интеграл в каждой ячейке по формуле средних и обозначая через соответственно пло¬щадь ячейки и координаты её центра, получим:
(6)
Справа стоит интегральная сумма; следовательно, для любой непрерывной она сходится к зна¬чению интеграла, когда периметры всех ячеек стремятся к нулю.
Оценим погрешность интегрирования. Формула (5) по самому её выводу точна для . Но непосредственной подстановкой легко убедиться, что формула точна и для любой линейной функции. В са¬мом деле, разложим функцию по формуле Тейлора:
(7)
где , а все производные берутся в центре ячейки. Подставляя это разложение в правую и левую части квадратурной формулы (5) и сравнивая их, аналогично одномерному случаю легко получим выражение погрешности этой формулы:
(8)
ибо все члены разложения, нечётные относительно центра симметрии ячейки, взаимно уничтожаются.
Пусть в обобщённой квадратурной формуле (6) стороны пространственного параллелепипеда разбиты соответст¬венно на N1, N2, …, Nk равных частей. Тогда погрешность интегрирования (8) для единичной ячейки равна:

Суммируя это выражение по всем ячейкам, получим погрешность обобщённой формулы:
(9)
т.е. формула имеет второй порядок точности. При этом, как и для одного измерения, можно применять метод Рунге–Ромберга, но при одном дополнительном ограничении: сетки по каждой переменной сгу¬щаются в одинаковое число раз.
Обобщим формулу ячеек на более сложные области. Рассмотрим случай K=2. Легко сообразить, что для линейной функции формула типа (5) будет точна в области произвольной формы, если под S подразуме¬вать площадь области, а под ¬–координаты центра тяжести, вычисляемые по обычным формулам:
(10)
Разумеется, практическую ценность это имеет только для областей простой формы, где площадь и центр тяжести легко определяется; например, для треугольника, правильного многоугольника, трапеции. Но это значит, что обобщённую формулу (6) можно применять к областям, ограниченным ломаной линией, ибо такую область всегда можно разбить на прямоугольники и треугольники.
Для области с произвольной границей формулу (6) применяют иным способом. Наложим на область сетку из K-мерных параллелепипедов (рис.3). Те ячейки сетки, все точки которых принадлежат области, на¬зовём внутренними; если часть точек ячейки принадлежит области, а часть – нет, то назовём ячейку гра¬ничной. Объём внутренней ячейки равен произведению её сторон. Объёмом граничной ячейки будем считать объем той её части, которая попадает внутрь ; этот объём вычислим приближённо. Эти площади подставим в (6) и вычислим интеграл.

листать страницы:
1  2  3